Suites – Sens de variation et somme géométrique – Première

septembre 13th, 2020

Category: Première, Suites

Tagged with: , , , , , , , , , , ,

Exercice N°006 :

Somme géométrique, arithmétique, première, suites, sens de variation

Exercice N°006 :

1) Étudier le sens de variation de la suite (un) définie par
u0 = 3,
un+1 = 2 un² + un + 3 pour tout n ∈ N.

(vn) est une suite géométrique de raison q > 0 telle que
v1 = 12 et v5 = 3072.
2) Calculer q puis v7.

3) Calculer 2 + 5 + 8 + … + 302.

4) En utilisant une suite géométrique dont on précisera la raison et le premier terme, calculer 1 + 2 + 4 + 8 + … + 32768.

Bon courage,
Sylvain Jeuland

Exercice précédent : Droites et Géométrie 2D – Points dans un repère – Seconde

Ecris le premier commentaire


Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

FrenchMaths.com

GRATUIT
VOIR