Fonctions – Composée, variations, racine, trinôme – Première

novembre 13th, 2019

Category: Fonctions, Première

Tagged with: , , , , , , , , ,

Maths de première : exercice de variation avec composée de fonctions. Domaine de définition, racine carrée, polynôme, second degré, inverse.

Exercice N°312 :

Exercice, variation, composée de fonctions, racine, trinôme, première

Exercice N°312 :

Soient u et v définies par
u(x) = -x2 + 2x + 3
pour x ∈ R.
et
v(x) = -3√x + 1
pour x ∈ [0 ; +∞[.

1) Pour quelles valeurs de x peut-on définir la composée u suivie de v ? Détailler précisément la démarche et les calculs. On notera D cet ensemble de définition.

2) Expliciter la composée u suivie de v.

3) Donner le sens de variation de u suivie de v sur D.

Expliciter dans les cas 4) et 5) la fonction composée u suivie de v, qu’on pourra noter f.
4) u(x) = x + 4
pour x ∈ R,
v(x) = 2x2 – 3x + 1
pour x ∈ R.

5) u(x) = x2 – 1
pour x ∈ [1 ; +∞[,
v(x) = 3/x – 2√x + 5
pour x ∈ [0 ; +∞[.

Bon courage,
Sylvain Jeuland

Mots-clés de l’exercice : exercice, variation, composée, fonctions.

Exercice précédent : Fonctions – Variation, signe, image, carré, racine – Première

Ecris le premier commentaire


Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

FrenchMaths.com

GRATUIT
VOIR